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The size of the charge cloud collected in a segmented germanium detector is limited by the size of the initial
cloud, uniformity of the electric field, and the diffusion of electrons and holes through the detector.  These factors
affect the minimize size of a practical electrode structure and consequently the position sensitivity.  We have
completed measurements on a germanium strip detector with a finely collimated gamma ray beam to measure
these properties.  Preliminary results indicate that the electrons and holes spread by <65 microns over 9 mm drift
distance.  The experiment was conducted using a germanium strip detector with 25 boron implanted strips on one
face and 25 orthogonal lithium drifted strips on the opposite face.  The size of the charge cloud is measured by
scanning the fan beam between neighboring strips.  Results of these experiments suggest that full charge
collection on a single strip would be achieved for a majority of events with strip pitch down to ≤300 microns in a
10 mm thick device.  Concerns of degradation in the energy resolution due to charge sharing between strips is
important for strip pitch much finer than this.  There is no evidence of charge loss in hole collection by the boron
implanted strips.  Applications of a fine pitch germanium strip detector include an imaging focal plane behind a
hard X-ray mirror (NASA Constellation mission), or a gamma-ray polarimeter for nuclear physics, amongst
others.

1. Introduction

Germanium strip detectors are one of a class of
semiconducting detectors which have important
applications in astrophysics and gamma-ray imaging
[1]. The configuration of the electrodes on these
detectors, strip vs. individual pixels, is generally
selected to suit a particular application or readout
electronics.  Both configurations have their respective
advantages, i.e. number of channels, fabrication
advantages, and the availability and attachment of
appropriate electronics.  There are also several
important alternatives to germanium, primarily
silicon, HgI, CdTe, CdZnTe, and others.  The
principles of spatial resolution and diffusion of the
charge carriers, however, is essentially the same in all
of these detectors.  In each case, electrons or holes
drift through an electric field and are collected by one
or several electrodes.  Spreading of the charge cloud
as it moves through the detector ultimately limits the
smallest sized practical electrode structures.  Energy

resolution is degraded when charge is divided
between two or more electrodes.  Thus, in many
applications the minimum electrode size is limited by
diffusion and the charge cloud size.

The size of the charge cloud is determined by
several factors.  First, the volume is approximated by
the range of the primary recoil electron after the
initial conversion of a gamma ray [2].  The
uniformity of the electric field can have several
effects.  Non-uniform fields can focus or defocus the
charge as it drifts.  Further, variations in the impurity
concentrations in the detector distort the applied
electric field lines [3,4] creating transverse drift
fields.  This is a smaller effect in Ge with impurity
concentrations >100 times smaller than in Si
detectors, however Ge detectors are typically much
larger volume.  Crystal grain boundaries also effect
the field uniformity in some detectors such as
CdZnTe.  Electrostatic repulsion of the charge
carriers is a significant factor, especially for larger
energy losses (>>60 keV) where the amount of
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ionization is quite large (>>20000 e) [5].  Finally, the
diffusion of electrons and holes through the detector
is important.

Germanium is an ideal detector to study charge
diffusion since the impurity concentrations are the
lowest of the semiconducting detectors, and
fluctuations in the electric field uniformity from
variations in impurity concentrations are small.

2. Experiment

Measurements on a germanium strip detector
were made with a finely collimated gamma ray beam.
The detector is described in ref. [1].  The lateral
diffusion of holes and electrons is observed by
comparing the spreading of the charge cloud as
holes/electrons are drifted 10 mm and 1 mm through
the detector respectively and comparing the
difference.

The experiment was conducted using a
germanium strip detector with 25 boron implanted
strips on one face (X-strips) and 25 orthogonal
lithium drifted strips on the opposite face (Y-strips).
The detector is 10 mm thick with 50 mm long strips
distributed on a 2 mm pitch.  A fan beam of 59.5 keV
gamma rays (241Am) was constructed with a 34
micron width to probe the detector.  The beam is
oriented along the length of one strip (e.g. X14 or
Y4), then moved in a sequence of steps until it is fully

over a neighboring strip.  Energy is measured by
summing the signal from all X-strips (or Y-strips)
above threshold (5 keV).  Events are selected where
the energy measured on both faces of the detector is
between 58.0 and 61.0 keV.  Energy resolution on
each strip is 1.7 keV FWHM.

The effective beam width is slightly larger due to
orientation of the fan beam with respect to the strips
under study.  The orientation of the beam is easily
determined by observing the transition from one strip
to its neighbor at positions along the length of the
strip.  The position along the strip is determined by
the orthogonal strips on the opposite face of the
detector.

Gamma rays have a range of 1 mm at 59.5 keV,
thus the majority of interactions are near the surface
of the detector.  The size of the charge cloud is
measured by scanning the fan beam between two of
the strips. The full charge cloud is collected entirely
on one strip when the fan beam is over that strip (Fig.
1).  As the beam moves over the edge, there is a
narrow region where charge is shared between the

Fig. 1.  Response to a 59.5 keV beam vs. position in two
neighboring boron implanted strips (p+ contact).   Top
panel is for beam incident on the p+ face and the bottom
panel is for the beam incident on the opposite face (n+

contact).  Dashed curve shows events that deposit energy
in both strips and sum to 59.5 keV.

Fig. 2. Response to a 59.5 keV beam vs. position in two
neighboring lithium diffused strips (n+ contact). Top and
middle panel are for beam incident on the n+ face.  A
correction for absorption in the n+ contact is applied to the
middle panel.  The bottom panel is for the beam incident
on the opposite face (p+ contact).
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two neighboring strips.   As the beam moves over the
next strip, the charge cloud is entirely collected by
that strip.  The region where charge is shared by the
two neighboring strips is governed by the size of the
charge cloud and the physical gap between the strips
(200 microns in this detector).  Boron implanted
strips collect holes produced in the interaction.

A similar experiment is performed for electrons
collected on the opposite face of the detector (Fig. 2).
Electrons are collected on lithium doped electrodes
that form an n+ blocking contact [6].  Lithium is
diffused to a depth of 300 microns into the detector.
Results for the electrons are more difficult to analyze
than for the hole diffusion measurement due to the
complex shape of the lithium electrodes.  The
physical gap between the lithium electrodes is
estimated to be 900 microns.

The increase in rate as the beam approaches the
edge of the strip is because events that interact in the
lithium diffused contact are lost, and the thickness of
the contact diminishes from 0.3 mm in the central
region, tapering to zero at the edge.. This absorption
is easily modeled and corrected (Fig. 2 middle panel).

3. Results

The count rate in a strip as the beam is moved
over the edge is well fit by gaussian function with the
peak centered on where the response starts to roll off.
These fits are the smooth curves shown in Figs. 1 and
2.  The half width half maximum (HWHM) of these
gaussians are remarkably similar, ranging from 0.10
to 0.15 mm for both boron and lithium contacts.
Results are summarized in Table 1.  The gap is
defined as the distance between the two strip edges at
the half-maximum point.

Table 1
Summary of strip edge measurements

The beam width in these four measurements is 1/3
to 1/4 of the observed HWHM.  Errors in the fit
curves are ±5 micron HWHM and ±10 micron in the
Gap width.

Details of the charge sharing events is beyond the
scope of this paper.  It should be noted that the

combined rate of events plotted in Fig. 1 dips slightly
in the gap region between strips with the tight event
selection criteria that was used.  However, these lost
events are recovered when the event selection criteria
is relaxed to include events with measured energy
between 54.5 and 64.5 keV.  The primary reason for
this difference is a small number of events that share
charge in two strips, but one of the strips is below the
detection threshold of ~5 keV.  The tight event
selection criterion rejects these events, but the looser
criterion accepts them.

Charge sharing events collected on the lithium
strips (Fig 2) almost always lose between 1.5−5 keV
of the 59.5 keV interaction.  This is probably due to
trapping in the low field region between the lithium
diffused contacts.  Observations suggest that this
region is ~200 microns thick in the center of the gap.

4. Discussion

The majority of gamma ray interactions in
germanium between 11 and 100 keV is through
photo-electric absorption by a K-shell electron.
Photoelectric absorption accounts for 88% of the
interactions at 59.5 keV.  Of these, 54% produce a
fluorescent X-ray between 9.8 and 11 keV emitted
isotropically from the interaction site.  The range of
the fluorescent Kα X-ray (85% of the emission) is 51
microns and the Kβ is 68-70 microns.  A simple
calculation shows that the typical range along any
specific direction is approximately one third of the
full range.  Thus, 63% of the fluorescent X-rays are
absorbed within 18 microns of the first interaction
along any given coordinate axis.

The size of the initial ionization cloud after a
photo-electric interaction is determined by the range
of the recoil electron.  The energy of this electron for
K shell absorption is 11 keV below that of the initial
gamma ray.  The recoil electron undergoes significant
secondary scattering thus rapidly losing any memory
of its initial direction.  The pattern of ionization left
by the electron is a charge cloud with a typical size
equal to the electron practical range [2].  The
practical range for an electron produced by a 60 keV
gamma ray is 7 microns in germanium.

Transverse electric field resulting from a gradient
in the impurity concentration may be responsible for
a significant lateral drift of the charge carriers.   The
impurity concentration in the detector used in this
experiment is estimated from the depletion voltage of
to be ~1.8×1010 cm−3, with a gradient of well less than

Contact Drift
Distance

HWHM
X14/Y4

HWHM
X15/Y5

Gap

B 10 mm .10 mm .11 mm .11 mm
B 1 .12 .13 .24
Li 10 .15 .11 .44
Li 1 .12 .13 .55
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a factor of 2 across its length.  A rough estimate of
the gradient in the impurity concentration is <2×109

cm−3 cm−1.  A transverse drift field in a 10 mm thick
device is estimated to be <50V.  On the other hand,
the gradient varies slowly in the detector, thus its
local effect at any position of interaction within the
detector is to add an offset the drifting charge, and
not to spread it out significantly.  The transverse drift
field could cause up to a 0.3 mm position offset for
charges that drift across the full detector thickness
(1500 V cm−1 applied field).

The observed HWHM is slightly broader than the
spatial scales of the fluorescence X-ray and variations
in the initial charge cloud.  Variations in transverse
electric field over the length of the strip, variations in
the strips themselves, and similar effects may also
contribute the strip edge sharpness.  Thus, the results
shown in Table 1 represent an upper limit to the strip
edge sharpness, but demonstrate what can be
achieved in a practical device.

Other lesser effects on the edge sharpness are due
to Compton and Thompson scattering.  Compton
scattering and Thompson scattering each account for
6% of the remaining interactions respectively.  The
range of a Compton scattered gamma ray depends on
its energy and scatter angle.  Thompson scattering in
the detector and in the vacuum cover over the
detector both contribute to a slight blooming of the
beam used to probe the detector.  This is apparent in
Figures 1 and 2 as a small sensitivity in one strip
while the beam is clearly over another strip.

The width of the gap between strips increases by
130 microns in Figure 1 and 110 microns in Figure 2.
This difference is attributed, at least in part, to the
lateral diffusion of holes and electrons as they drift
~9 mm through the thickness of the detector.  The
diffusion constant for holes in germanium is deduced
from the hole mobility and the Einstein relation:

κ = kTµ/e 1)

where κ is the transverse diffusion constant, µ is the
mobility, e is the electron charge, and kT  is the
thermal energy.  It is appropriate to use the mobility
for a small electric field since the transverse field is
small.  The calculated diffusion constants are 230
cm2s−1 and 210 cm2s−1 for holes and electrons
respectively.  The time for diffusion is given by the
distance traveled (~9 mm) and the drift velocity.  At
1500 V bias this is 120 ns and 108 ns for holes and
electrons respectively.  A simple one dimensional

diffusion calculation with the requirement that
>97.5% of the charge is collected (i.e. >58 keV)
shows that the charge spreads by 142 microns for
holes and 130 microns for electrons.  In theory, the
cut-off for each strip should move by this amount and
the gap should increase by twice this amount.  The
observed increase in the gap is about half of this
predication, setting an upper limit on the lateral
diffusion of ~130 cm2s−1.  Energy resolution around
the event selection threshold accounts for an error of
~22 cm2s−1.

5. Conclusion

These measurements show that lateral charge is
important in the behavior of a germanium strip
detector, and dominate over the size of the initial
charge cloud at 59.5 keV.  A practical device must
consider the size of the ionization cloud(s) and an
estimate of lateral charge diffusion in order to select
an appropriate electrode configuration.  We
emphasize that the lateral diffusion is only 1% of the
thickness of the device used in these experiments, and
is much smaller than the gaps between the electrodes.

Charge sharing between two or more strips begins
to dominate for strip pitch much finer than ~300
microns in a device like the one used here.  However,
this limit is similar to the size of the gap between the
p+ electrodes.  In principle, finer strips may be
possible in a thinner detector or a detector with a
narrow gap between the strips.  This applies to both
the hole and electron collection electrodes.  It is
unlikely that the lithium diffused technology can be
segmented much finer than ~1−2 mm, thus a finer
pitch on the n+ contact will require a different contact
technology.
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