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ABSTRACT

The Gamma-Ray Spectrometer on the Solar Maximum Mission satellite observed y-ray lines
during the 0312 UT solar flare on 1980 June 7. The impulsive X- and y-ray event lasted for <50s
and consisted of a series of quasi-periodic pulses on a time scale of a few seconds over the range of
energies from 20keV to 7 MeV. We report here preliminary results on the strongest y-ray line
observed at an energy of 2.232 £+ 0.012 MeV with a maximum flux of (7.1 4+ 1.2) X 102 cm—2s~1,
The energy of this line and its flux time history clearly identify it to be the 2.223 MeV line from
neutron capture in the solar photosphere. The observed time history of this line is consistent with
a spectrum of fast neutrons, extending to >S50 MeV, produced during a ~40 s interval overlapping
the impulsive photon emission time interval. A total production of 4 X 10 neutrons is required,
if they were produced isotropically.

Subject headings: gamma rays: general — Sun: flares

I. INTRODUCTION

The v-ray line at 2.223 MeV from the reaction 'H(, v)?H is the most intense emission observed when energetic
ions accelerated by solar flares interact with the solar atmosphere (Chupp et al. 1973; Chupp, Forrest, and Suri
1975; Ramaty, Kozlovsky, and Lingenfelter 1975; Hudson ef al. 1980). The observation of this and other y-rays
during a solar flare gives important data on solar flare phenomena. (For recent reviews, see Chupp 1976; Ramaty
and Lingenfelter 1979.) We report here observations of this y-ray line with the SMM Gamma-Ray Spectrometer
in association with a flare on 1980 June 7. This measurement, for the first time, resulted in an optimum combination
of flare duration, y-ray flux, and spectrometer sensitivity to provide a detailed time history of the 2.223 MeV line
intensity. Detailed studies discussing the complete y-ray data obtained on the event are in progress.

Basically, the instrument consists of a NaI(Tl) spectrometer operating in the energy range from 0.3 to 9 MeV
with an energy resolution better than 7%, (FWHM) at 662 keV. A complete 476 channel pulse-height spectrum is
accumulated every 16.38 s and higher time resolution data, 64 ms, are provided in a 50 keV burst window centered
on 330 keV. Auxiliary hard X-ray detectors which operate in the energy range 10-140 keV accumulate data every
1.024 s (cf. Forrest ef al. 1980).

II. OBSERVATIONS

The Ha solar flare commenced at 0312 UT on 1980 June 7 in region 2495 at heliographic coordinates N17 W70.
The ground-based observations of this event are discussed in some detail by Rust e ef. (1981). In Figure 1 we show
the time history of the flare emissions from 10 keV to >8 MeV. Panels la-1f have an intrinsic time resolution of
1.02 5, while 1g-17 have time resolution of 16.38 s. In panel 1%, the successive 16.38 s spectral scans are numbered
from 1 to 16. Note that there is strong emission over the full energy range from 10 keV to 8 MeV, and in particular
the emission in panel 1%, which covers the 2.223 MeV line, continues after the impulsive phase ends. Figure 2 shows
the pulse-height spectrum for scans 9 and 10 with a fitted continuum and Gaussian line for the feature near 2.2 MeV.
The energy of the fitted line is 2.232 + 0.012 MeV and the count rate corresponds to a line flux at the spectrometer
of (7.1 £ 1.2) X 102 cm—2 s~ !, Figure 3 shows the count rate variation versus time for this line. The measured
energy and time history clearly identify it as the 2.223 MeV line from the reaction 'H(x, ¥)?H.

III. INTERPRETATION

The detection of the 2.223 MeV line requires a flux of neutrons produced by nuclear reactions near the time of
the flare. To determine the time interval over which the nuclear reactions took place and the intensity and energy
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spectrum of the resulting neutrons, we must analyze the sequence of events leading to emission of the 2.223 MeV
photon flux.

The fast neutrons, produced in nuclear reactions, must be thermalized by elastic scattering in the dense photo-
sphere. The thermal neutrons can then be lost by several modes, one of which is capture by 'H resulting in the
emission of a 2.223 MeV photon which must escape unscattered from the photosphere to be detected as a line at
1AU.

This behavior of solar flare-produced neutrons has been modeled in some detail by Wang and Ramaty (1974),
Wang (1975), and Kanbach et al. (1975). In particular, the first two authors assumed an impulsive isotropic emission
of fast neutrons (E, = 0.5-200 MeV) at an altitude of 3 X 10° cm above the photosphere. They considered neutron
losses due to nonradiative capture on *He, decay, escape by scattering out of the photosphere, and capture on H.
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Fic. 1.—The time history of energetic photon emissions is shown for several energy intervals from 10 keV to 8 MeV. Time resolution
for panels la-1fis 1.02 s and for 1g-1j is 16.38 5.
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F1c. 2.—A portion of the pulse height spectrum near 2.2 MeV is shown for data scans 9 and 10 indicated in Fig. 1. Also shown are

the best-fit continuum and the best-fit Gaussian peak. The best-fit Gaussian parameters are E = 2.232 MeV, o = 46.5keV, and 4 = 106
counts.
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Fi16. 3.—The time history of the 2.223 MeV line count rate is shown along with the predicted rates based on a model using two neutron
populations (see text).

The propagation of the resulting 2.223 MeV photons out of the photosphere was followed for flares located at various
heliographic longitudes. The yield of 2.223 MeV photons per neutron is a function of the *He abundance, the initial
neutron energy, and the flare location. The time distribution of the 2.223 MeV flux for a delta function production
of fast neutrons is described by a rise time dominated by the neutrons’ flight time before scattering and a decay
time due to the total loss rate of neutrons. This decay time depends on the *He abundance and ambient particle
density. The highest-energy neutrons are captured at higher densities, which result in shorter capture times.

An analytical functional form can be used to compare our measured data with the tabular results of Wang (1975).
If the production rate of fast neutrons, I,, is constant over a time interval 7, then the time varying 2.223 MeV
line intensity, I,, can be shown to be:
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Ay
fort> T (' =t — T). The parameter f is a number <1 and accounts for the various loss modes of the neutrons,
as well as 2.223 MeV photon losses due to Compton scattering in the photosphere. This f is identical to the photon
yield per neutron, f(8, E,), given by Wang and Ramaty (1974), where 8 is the heliographic longitude of the solar
flare site. The parameter A, is the combined neutron transport and thermalization probabilities per unit time, and
Az is the total neutron loss probability per unit time.

In order to determine the neutron energy dependence of f, Ay, and As, we use equation (2) with 7' = 0 to model
the tabulated Monte Carlo results given by Wang (1975) for § = 75° and 3He/'H = 5 X 10~° and 0 over all values
of E, with the results shown in Table 1. Using parameters given in Table 1 and equations (1) and (2) we model the
2.223 MeV time history shown in Figure 3 and obtain the following results: (1) The peak intensity in data scan 9
shows that strong neutron production stopped at or before this interval, and (2) the data both during and after a
40 s production interval is consistent with two line intensity distributions, I,, with decay time constants, \s, of
(50s)~! and (200 s)~*. Hence, monoenergetic fast neutrons apparently cannot explain the data, and a spectrum of
neutrons is required.

The simplest neutron distribution consistent with the Wang and Ramaty (1974) model is a constant isotropic
production of 5.9 X 10%" neutrons s at 0.5 MeV together with 3.4 X 10?" neutrons s~! at 50 MeV. The required
production interval, overlaps the impulsive photon emission interval (see Fig. 1). The expected 2.223 MeV y-ray
count rate resulting from these two neutron distributions, after necessary corrections, is compared to the data in
Figure 3. Also shown is the inferred 40 s fast neutron-production interval.

The time interval during which the neutrons were produced, and the total number produced are strongly con-
strained by the data. The total number of neutrons given above assumes isotropic neutron emission. However,
Kanbach ef al. (1975) have shown that for the case of a vertically incident beam of fast neutrons, the photon yield
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TABLE 1

ProtoN TiME CONSTANT PARAMETERS, Ay AND Ag, AND PHOTON YIELD
PER NEUTRON, f, OBTAINED UsING EQuaTioN (3) AND THE TABULATED
MonTe CArRLO DaTta OF WaNG (1975)

1(75°, En)
NEUTRON {photons/neutrons) M7 (9) A1 (s)
ENERGY
(MeV) e b e b a b

0.107 0.075 6 9 274 195
0.107 0.087 11 4 205 165
0.135 0.091 8 4 189 158
0.130 0.090 <3 <5 150 112
0.131 0.092 2 <2 143 110
0.131 0.085 <2 <4 130 87
0.102 0.060 <4 <1 109 59
0.060 0.039 <2 <4 94 51
0.045 0.023 <3 i 109 54
0.020 0.012 <3 <3 116 55

Norte.—Columns labeled ¢ are for the case 3He/TH = 0. Columns labeled b are
for the case 3He/'H = 5 X 1073,

per neutron only increases by a factor of ~3 as compared to the case of isotropic emission. Hence, the number of
neutrons required for any emission model is still >10% produced over a 40 s interval.

IV. CONCLUSIONS

The impulsive continuum emission above 20 keV and a longer-lived y-ray line at 2.223 MeV show that boik ener-
getic electrons and nucleons were accelerated in association during the solar flare at 0312 UT on 1980 June 7. Statis-
tically significant measurements of the 2.223 MeV intensity over a ~500 s interval, during and after the impulsive
phase, allow us to place strong constraints on the production of neutrons by the accelerated ions. If the neutrons
are emitted isotropically, the (50 s)~! time constant requires a flux of energetic neutrons >50 MeV impinging on
the solar photosphere with a He/'H ratio of ~5 X 10~5. With this *He/'H ratio, the two time constants require a
spectrum of neutrons from 0.5 MeV to > 50 MeV. Most importantly, since the neutron production interval is strongly
constrained to an ~40 s interval overlapping the impulsive event, then the energetic ions must have been accelerated
either before or in near time coincidence with the energetic electrons.
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