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q Design and Development

– Science Requirements and Performance

– Calorimeter Concept

– Design Evolution

– LAT Calorimeter Design

– EM Calorimeter

• Status and Performance

– FM Testing and Calibration
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Level III Science RequirementsLevel III Science Requirements

q Requirements that bear on science performance of CAL

< 2% for Carbon ions of energy > 100 MeV/n, at a pointEnergy resolution (1 sigma)
Single crystal

Modular, hodoscopic, CsI
> 8.4 RL of CsI on axis

Design

>1050 cm2 per module
< 16% of total mass is passive material

Active area

15° x cosθ, for muons in 8 layersAngular resolution

< 3 cm in 3 dims, minimum-ionizing particles,
Incident angle < 45 deg

Position resolution

< 20% (20 MeV < E < 100 MeV)
< 10% (100 MeV < E < 10 GeV)
< 6% (10 GeV < E < 300 GeV, incidence angle > 60 deg)

Energy resolution (1 sigma)

20 MeV – 300 GeV
5 MeV – 100 GeV  (single crystal)

Energy range

RequirementParameter
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Level III RequirementsLevel III Requirements

q How do we know Level III requirements are met?
– Proof by design
– Proof by simulation
– Proof by demonstration

• Prototype calorimeters
• Engineering Model CAL

q Geometry requirements
– Proof by design

Modular, hodoscopic, CsI
> 8.4 RL of CsI on axis

Design

>1050 cm2 per module
< 16% of total mass is passive material

Active area

RequirementParameter

1080 cm2 per module
<14% passive material

Modular, hodoscopic, CsI
8.6 RL of CsI on axis

Performance
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Level III:  Energy RangeLevel III:  Energy Range

q Proof by analysis/simulation and demonstration
– Lower limit determined by electronic noise

• Need to set zero-suppress threshold at 5 x noise
– EM noise < 0.3 MeV   è threshold < 2 MeV

– Upper limit determined by 
• Saturation of electronics

– EM saturates at ~100 GeV (single xtal)

• Shower containment in CAL
– CAL Monte Carlo simulation

20 MeV – 300 GeV   (full CAL)
5 MeV – 100 GeV     (single xtal)

Energy range

RequirementParameter

20 MeV – 300 GeV   (full CAL)
~2 MeV – 100 GeV   (single xtal)

Expected Performance
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Level III:  Energy resolutionLevel III:  Energy resolution

q Proof by simulations, beam tests
– Below ~ 200 MeV, dominated by Tracker 

calorimetry
• Required performance not yet demonstrated 

at 100 MeV:  current best ~15%
– Above ~ 10 GeV, dominated by leakage

< 20% (20 MeV < E < 100 MeV)
< 10% (100 MeV < E < 10 GeV)
< 6% (10 GeV < E < 300 GeV, >60°)

Energy 
resolution 
(1 sigma)

< 2% for Carbon ions of energy > 100 
MeV/n, at a point

Energy 
resolution 
(1 sigma)
Single crystal

RequirementParameter

< 8%   (1 GeV < E < 10 GeV)
< 6%  (10 GeV < E < 300 GeV, >60°)

Expected Performance

Resolution on axis
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Level III:  Position and Angular ResolutionLevel III:  Position and Angular Resolution

q Proof by demonstration, simulation
– Cross section of xtal

• 1.99 cm x 2.67 cm
– Longitudinal positioning

• Defined by electronic noise
• BTEM performance

– ~3 cm
• EM performance

– Typical PEM rms < 0.5 cm
– EM Module not yet demonstrated

• Expect FM performance
– 1.5 cm at 30 deg

– Angular resolution
• Calculated from positioning
• EM performance not yet demonstrated
• Expect FM performance

– 8° x cosθ

< 3 cm in 3D, min-ionizing, < 45 degPosition res

15° x cosθ, for muons in 8 layersAngular res

RequirementParameter

Sample PEM muon
resolution:  0.4 cm
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Calorimeter ConceptCalorimeter Concept

q Calorimeter Concept, or, How we got there from here….

q LAT is modular
– So CAL is modular

q Active CAL or Sampling CAL?
– Low E performance rules out sampling
– Maintain high stopping power for EM showers within the mass budget

q Imaging CAL
– Energy-profile fitting improves energy resolution
– Background rejection
– CAL-only events

q Segmentation
– Moliere radius is 38 mm
– Radiation length is 19 mm
– Bkg rejection requires positioning on same order

• Xtals have cross section with dimension on this order
• Xtals give longitudinal positions better than this order
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Energy ReconstructionEnergy Reconstruction

q Shower profiling
– Corrects for energy escaping out 

the back of the CAL
• Mean longitudinal profile of EM 

shower energy deposition is 
well-described by gamma 
distribution:

– Process:  
• Measure energies deposited in 

slices through CAL
• Integrate profile model
• Find best fit for starting point 

and incident energy
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Shower Imaging in CsIShower Imaging in CsI

q Position reconstruction in xtal
– Relies on position-dependence of 

CsI light output (“tapering”)
• Achieved by roughening surface of 

CsI and reading out both ends
– Position ∝ difference in signal

• Difference = “light asymmetry”
– Resolution is intrinsically precise

• In practice, dominated by mapping 
uncertainty and electronic noise

• 1997:  Demonstrated position error 
of 10-3 of xtal length

1997 prototype
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Concept ImplementationConcept Implementation

q Detectors
– Highly segmented

• No individual packaging:  reject NaI(Tl), use CsI(Tl)
• CsI(Tl) read with photodiodes gives ~ same light 

yield as NaI(Tl)
– Photodiode readout

• Small, lightweight, low power, rugged
• Redundant readout gives fault protection and 

positions within each CsI xtal
q Electronics

– Large channel count requires low power per channel, 
ASICs

– Large dynamic range (~105) is demanding
– Need to minimize space, passive/empty volumes

q Mechanical
– Carbon structure gives stable dimensions and fixture 

of detectors over thermal range and against launch 
loads

– Supports detector readout on each side face of CAL



GLAST LAT Project CAL Peer Design Review, Mar 17-18, 2003

E. Grove 4-12

Naval Research Lab
Washington DC

Design EvolutionDesign Evolution

q Sampling calorimeter rejected
q Active CsI calorimeter

– Initial concept
• Vertical CsI bars, one PD per xtal

– 1996 beam test prototype
• Transverse CsI bars, two PDs per xtal
• Demonstrated shower energy profiling

– 1997 beam test prototype
• Transverse CsI bars, hodoscopic layout
• Demonstrated good longitudinal position 

resolution
– Beam Test Engineering Model (BTEM)

• Essentially full-size tower (10 xtals x 8 layers)
• ASIC readout
• SLAC beam test, GSI beam test, Balloon flight

’96 bars

’97 proto

BTEM
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Testing HistoryTesting History

q Calorimeter Beam Tests

Charged-particle 
identification

High energy shower 
profiling

Full-size Tower concept, 
DPD, ASICs

Crystal mapping

Crystal mapping with 
particles

Shower profiling
Position reconstruction

CsI(Tl) with PD readout

Proof of Concept

BTEM and 37-cm xtalsC and Ni at 400-
700 MeV/u

GSI 2000

31-cm xtalsPhoton and eCERN 1999

BTEM calorimeterPhoton, e, and pSLAC 1999

31-cm xtalsPhoton and eCERN 1998

1997 CAL and 31-cm xtalsH, He, and C at 
160 MeV/u

MSU 1998

Hodoscopic 19-cm xtalsPhoton and eSLAC 1997

19-cm xtals on axisPhoton and eSLAC 1996

InstrumentBeamsTest
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Crystal Detector ElementCrystal Detector Element

q Principle:  CDE is a testable detector
q CDE has four components

1. Active detector:  CsI(Tl) crystal
2. Readout:  two photodiodes
3. Optical seal:  reflective wrapper
4. Mechanical interface:  two end caps

PIN Diode
(each end)

CsI Crystal

Optical Wrap

Wire
leads

Bond

End Cap

EM CDEs during wrapping
and attachment of end caps
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CrystalsCrystals

q Principle
– High light output
– High stopping power
– Energy and position sensitive
– Low cost
– Compatible with mechanical 

concept
q Implementation

– CsI(Tl) crystals
• Choice of vendors

– Crismatec (France)
– Amcrys H (Ukraine)

» Identical performance from Amcrys at much lower cost

– Light tapering
• Xtal surfaces treated to attenuate light
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PhotodiodesPhotodiodes

q Principle
– Good spectral response match to 

CsI(Tl) scintillation
– Very small mass, volume, and power
– Rugged
– Commercial product with space 

heritage
q Implementation

– PIN photodiodes
– Two diodes to help cover dynamic 

range
• Both diodes large enough for 

ground testing (muons)
– Single carrier for easier mounting
– Need flexible interconnect to AFEE

EM dual photodiode
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Mechanical StructureMechanical Structure

q Principle:  Stable mechanical structure to 
define CDE locations and secure them against 
launch loads
– Must hold ~80 kg against ~6 g with  ~10 kg
– Must account for thermal expansion of CsI

q Implementation:
– Carbon composite structure

• 96 individual cells
– Al top, bottom and side plate

• Bottom plate provides attachment to 
Grid, and support for TEM and Power 
Supply

– Sides provide support for AFEE boards

EM Structure
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ElectronicsElectronics

q Principle
– Need to cover a very large dynamic range (few x 105)
– Low noise (~2000 electrons noise)
– Low power (~20 mW per crystal end)
– Limited space (8 mm thickness), match pitch of CsI crystals (28x40 mm)
– Interface to TEM

q Implementation
– Use 1 custom analog and 1 custom 

digital ASIC to minimize power
– Use 2 input signals to reduce dynamic 

range requirement on electronics
• Each input signal goes into 2 gain ranges
• Have ranges to 200 MeV, 1.6 GeV, 

12.5 GeV and 100 GeV

– Use commercial 12-bit ADCs
– Separate analog from digital on

front-end (“AFEE”) board
– Low dead time (20 µs)
– Sparsify data (zero suppress)

EM AFEE board
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Engineering ModelEngineering Model

q EM Calorimeter
– Full-size calorimeter
– Fully populated with CDEs and AFEEs
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EM Crystal PerformanceEM Crystal Performance

q CsI(Tl) crystals
– Vendor:  Amcrys H
– Procured 244 crystals
– Dimensional specs changed after 

purchase, so we committed two sins
1. Remachined length
2. Remachined chamfers

– Amcrys would not guarantee optical 
performance after this extensive 
handling, so we waived light taper 
requirement for EM

q Testing
– Visual inspections performed at NRL
– Xtal dimensions were verified at 

Kalmar
– Optical performance was tested at 

Kalmar and NRL
• Xtal Optical Testing Station 

(XOTS)
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EM Crystal Optical PerformanceEM Crystal Optical Performance

q Results of EM performance testing 
with Xtal Optical Test Station
– Light yield constancy is within spec
– Light taper is (mostly) within spec

• One batch was below spec, likely 
caused by remachining of xtals

• We waived EM taper requirement

– Energy resolution is within spec

Light yield

Light taperEnergy resolution
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EM Crystal DimensionsEM Crystal Dimensions

q Dimensions of EM crystals
– Length, width, and height are within 

spec
– Note obvious truncating of width 

distribution
• Optical surface treatment is 

applied to width
• Xtals needed less surface 

treatment than Amcrys expected

Height

WidthLength
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EM Photodiode PerformanceEM Photodiode Performance

q EM photodiode
– Vendor:  Hamamatsu, custom S8576
– Procured 650 DPDs according to spec 

LAT-DS-0072-03
q Testing

– Electrical performance at NRL and in France
• Within spec

– Optical performance in France
• Within spec

– Radiation hardness in France
• Within spec

– Bonding studies at NRL and in France
• Within spec

– Thermal stability at NRL and in France
• Fail (see DPD, section 5.1), so optical 

window material will change

Capacitance

Dark current
(big PIN)
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Issue at PDR:  Diode BondingIssue at PDR:  Diode Bonding

q Need an optical bond between photodiode and CsI
1. Must be optically clear
2. Must adhere to CsI
3. Must be stable against thermal cycling
– Items 2 & 3 were a problem

• CsI behaves like “oiled lead”
– Not all adhesives adhere to it

• Mismatch between large coef of thermal expansion (CTE) of 
CsI and small CTE of PD
– Hard epoxies used in BTEM failed optically
– Optical waxes used in earlier prototypes would liquify

– Extensive research program in US and France
• Soft epoxies, silicones, bonding surface treatments, …
• Solution:  silicone encapsulant with compatible primer

– Dow Corning DC93-500 with DC92-023
– Developed bonding process, implemented on EM CAL
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EM Diode Bonding ProcessEM Diode Bonding Process

q Bonding process for EM developed together with Swales Aerospace
– Teflon mask defines bond thickness and area, and locates diode  

precisely on xtal end face
– Mold assembly allows diode and xtal faces to be primed prior to 

bonding
– Bond material is injected into defined volume and allowed to cure

Mask

Seal

Photodiode

Mold

Crystal

Photodiode
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Support Fixture

EM Bonding ProcessEM Bonding Process

EM build:
110 CDEs at Swales
14 CDEs at Saclay

Hanging xtal in 
bonding fixture

Priming xtal

Silicone injected,
waiting to cure
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EM Bond:  Mechanical Strength TestsEM Bond:  Mechanical Strength Tests

q Two types of destructive tests were performed at NRL
– Tensile strength requirement

• 10 N (2.2 lbf)
– Shear strength requirement

• 0.12 N/mm2 (8 lbf = 35 N for EM diode)

q Samples are pulled or sheared to failure in Dynamic Load Test Stand

Xtal

Diode

X
ta

l

Piston
Piston

Bond
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Shear Strength
EM diode
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EM Bond:  Strength TestsEM Bond:  Strength Tests

q More than 65 bonds tested
– Tensile strength sample

• Fails at ~280 N  
è 28 x requirement

– Shear strength sample
• Fails at ~230 N  
è 7 x requirement

q Typical failures are
– ~10 x strength requirement
– At interfaces, rather than in 

bond material
• Slightly more likely at diode 

face

q Adhesion problem with CsI is 
solved

One-stage bond
Swales crystal sample 02-005
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EM CDE PerformanceEM CDE Performance

q EM CDE build
– 110 at Swales Aerospace
– 14 at Saclay

q Verifying EM CDE performance
– Mechanical

• Do they fit in Mech Structure?
– Optical

• Muon telescope
– Two layers of xtals

» Top layer is EM CDEs
» Bottom layer is prototype 37-cm xtals

– Lab electronics and DAQ
– Image muons passing through array

• Tested all EM CDEs
Saclay and Swales CDEs have identical performance
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EM CDE Optical PerformanceEM CDE Optical Performance

q Performance of EM CDEs
– Light yield

• Big PD within spec
– Typical:  8000 e/MeV
– EM Spec:  >5000 e/MeV

• Small PD within spec
– Typical:  1500 e/MeV
– EM Spec:  >800 e/MeV

– Light asymmetry (mostly) within spec
– EM spec:  >0.17, <0.39

Light yield:
Big PD

Light yield:
Small PD

Light asymmetry
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EM CDE TestingEM CDE Testing

q Comparison of xtal
to completed CDE
– As expected, xtal light 

taper is strongly 
correlated with CDE light 
asymmetry

• Xtals retapered at NRL 
(star symbol) are not 
correlated, also as 
expected

– CDE performance is 
within spec

– Conclusion:
CDE manufacture 
preserves xtal optical 
properties
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EM PEM AssemblyEM PEM Assembly

q EM Pre-Electronics Module
– 82 Swales CDEs and 14 Saclay CDEs successfully inserted 

into Mechanical Structure
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EM PreEM Pre--Electronics Module PerformanceElectronics Module Performance

q Performance of EM PEM
– Assembled PEM with GSE 

Checkout electronics
– >5 million muons collected
– Data being analyzed with Ground 

Science Analysis Software system
• Muon trajectories imaged
• CDE light tapers mapped

Muon energy
deposition

Light asymmetry map
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CalibrationCalibration

q How will we know Flight CAL achieves science requirements?  
q How do we calibrate the instrument?
q What needs to be calibrated?

– Energy measurement
• Need relative calib among xtals and absolute calib
• Level III requirements:  3% relative, 10% absolute

– Position measurement
• Need calibration of light taper in each xtal
• Level IV requirement:  taper slope uncertainty of 10%

– Calibration data sources
• Pre-launch

– Electronic calibrations
– Sea-level muons
– Beam tests of CU (4-module array)

• On-orbit
– Electronic calibrations
– Cosmic rays
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CalibrationCalibration

q Electronic calibration
– Inject known charge into 

each Front End
• Measures

– Electronic gain (e/bin)
– Integral non-linearity

• Does not measure 
“optical gain”

– i.e. conversion between 
energy deposited and electrons at each Front End

– Automated process can be run on ground or in flight
• Ramps charge through full dynamic range
• Returns histogram or centroid of each input
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CalibrationCalibration

q Sea-level muon calibrations
– Performed only on ground

• At CDE level, PEM level, and Module level
– Image muons passing through detectors

• Muon ∆E ~ 11 MeV per xtal, only ~10-4 of FE dynamic range
• Measures

– Optical gain, i.e. energy per bin 
– Light taper

• Does not measure full 
dynamic range

– Requires hodoscope
• CDE testing in France

– External muon telescope
• PEM and Module testing 

in US
– CAL xtal hodoscope
– TKR, when available
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CalibrationCalibration

q Beam tests
q Engineering Model

– Scheduled for Nov 03 at GSI (Darmstadt, Germany)
– Heavy ion beams

• Measures
– Energy scale
– Scintillation efficiency for cosmic rays

q Calibration Unit (CU = first 4 CAL+TKR Modules)
– To be performed at SLAC, Summer 04
– Photon, electron, hadron beams

• Measures
– Optical gain
– Light taper
– Energy scale

• Does not measure
– Scintillation efficiency
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CalibrationCalibration

q Cosmic ray calibration
– Primary energy and position 

calibration of CAL
– Performed only on orbit with full 

LAT instrument
– High flux of GCRs gives good 

calibration of most of dynamic 
range

• Measures
– Optical gain
– Light taper
– Energy scale

• Does not measure
– Scintillation efficiency
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ConclusionsConclusions

q Physical principles of design are well demonstrated
q Expect Flight Model to meet Level III requirements 
q Engineering Model tests to date show performance (mostly) 

within spec
q Methods to determine and calibrate Flight Model performance 

are understood


